Kinetic and thermodynamic evaluation of phosphate ions binding onto sevelamer hydrochloride.

نویسندگان

  • Reem Elsiddig
  • Helen Hughes
  • Eleanor Owens
  • Niall J O' Reilly
  • David O'Grady
  • Peter McLoughlin
چکیده

Sevelamer hydrochloride is the first non-aluminium, non-calcium-based phosphate binder developed for the management of hyperphosphatemia in end stage renal diseases. It is a synthetic ion-exchange polymer which binds and removes phosphate ions due to the high content of cationic charge associated with protonated amine groups on the polymer matrix. This is the first in-depth study investigating phosphate removal in vitro from aqueous solutions using commercially available sevelamer hydrochloride at physiological conditions of phosphate level, pH and temperature. The kinetic and thermodynamic parameters of phosphate binding onto the sevelamer hydrochloride particles were evaluated in order to define the binding process. A series of kinetic studies were carried out in order to delineate the effect of initial phosphate concentration, absorbent dose and temperature on the rate of binding. The results were analysed using three kinetic models with the best-fit of the experimental data obtained using a pseudo-second order model. Thermodynamic parameters provide in-depth information on inherent energetic changes that are associated with binding. Free energy ΔG°, enthalpy ΔH°, and entropy ΔS° changes were calculated in this study in order to assess the relationship of these parameters to polymer morphology. The binding reaction was found to be a spontaneous endothermic process with increasing entropy at the solid-liquid interface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Modeling Studies of the Binding Characteristics of Phosphates to Sevelamer Hydrochloride – Assessing a Novel Technique to Reduce Phosphates Contamination

Recent advances in the use of polymeric materials for the remediation of phosphate from aqueous systems, including biological environments, have prompted the use of computational techniques to determine which methods are feasible to model such complex systems and to model the mechanism of binding action. In particular, Sevelamer Hydrochloride (Renagel) is used as our model polymer. A relatively...

متن کامل

Pharmacology of the Phosphate Binder, Lanthanum Carbonate

Studies were conducted to compare the phosphate-binding efficacy of lanthanum carbonate directly with other clinically used phosphate binders and to evaluate any potential adverse pharmacology. To examine the phosphate-binding efficacy, rats with normal renal function and chronic renal failure received lanthanum carbonate, aluminum hydroxide, calcium carbonate, or sevelamer hydrochloride in sev...

متن کامل

Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetics, Intra Crystalline Diffusion, and Thermodynamic Studies

This paper focuses on intra crystalline diffusion of Ni2+ ions onto NaX and NaY zeolites. The zeolites are obtained by the hydrothermal synthesis method. The samples were characterized by several techniques: X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) and InfraRed Spectroscopy (FT-IR). Physical parameters such as p...

متن کامل

Combination of Experimental Design and Desirability Function as a Genuine Method to Achieve Common Optimal Conditions for the Adsorption of Pb(II) and Cu(II) onto the Poplar Tree Leaves: Equilibrium, Kinetic and Thermodynamic Studies

In this study, the ashes of poplar tree leaves are applied as an efficient, accessible and inexpensive biosorbent for the removal of heavy metals Pb2+ and Cu+2 in aqueous solutions. In the adsorption processes, the success of the ions removal highly depends on the level of several experimental factors such as pH, contact time, adsorbent dosage and temperature. Therefore, a genuine statistical e...

متن کامل

Removal of Strontium Ions by Synthetic Nano Sodalite Zeolite from Aqueous Solution

In this research, the zeolite sodalite, as an inorganic ion exchange material, was chemically produced in the template-free synthesis and evaluated in order to facilitate the sorption of strontium ions from aqueous solutions in batch operations onto acid treated zeolite with dilute H2SO4 solutions. The following indicates what the batch experiments included: a sorbent amount of 0.25 g in 100 mL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 474 1-2  شماره 

صفحات  -

تاریخ انتشار 2014